Isolation and Spectroscopic Properties of A- β -[PV₃W₉O₄₀]⁶⁻ Anion Salts and Their Isomerization to the α -Isomers

Isao Kawafune* and Gen-etsu Matsubayashi†

Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Joto-ku, Osaka 536

†Department of Applied Chemistry, Faculty of Engineering, Osaka University, 1-16, Machikaneyama, Toyonaka, Osaka 560

(Received August 9, 1995)

 β -Isomers of A-type vanadium-trisubstituted nonatungstophosphate anion salts were synthesized by a condensation of NaVO₃ and A-Na₉[PW₉O₃₄]·7H₂O in an aqueous hydrochloric acid and 1,4-dioxane mixed solution. Their geometries were characterized by IR, ³¹P, ⁵¹V, and ¹⁸³W NMR spectroscopies. The tetrabutylammonium salt of the β -isomer, A- β -(NBuⁿ₄)₄H₂[PV₃W₉O₄₀], isomerizes to the corresponding α -isomer both in the solid state and in solution under mild conditions, which can be directly followed by FT-IR and ³¹P NMR spectroscopies. The kinetics of the isomerization in the solid state had a first-order rate constant at 40 °C, k_1 = 2.19×10⁻⁷ (s⁻¹), together with ΔH^{\ddagger} = 93.3 (kJ mol⁻¹) and ΔS^{\ddagger} = -77.3 (J K⁻¹ mol⁻¹). On the other hand, A- β -Cs₆[PV₃W₉O₄₀] and A- β -(NBuⁿ₄)₆[PV₃W₉O₄₀], which have no protons in the cation part, do not isomerize under the same conditions. The β -to- α isomerization is promoted by protonation at the bridging oxygen atom in the W-O-W bond of the polyanion.

Mixed addenda heteropolyanions, which contain two or more kinds of elements as addenda atoms, have attracted much attention, because their redox properties can be precisely controlled by modifying the constituent addenda atoms1) and they are regarded as discrete model complexes of mixed metal catalysts. 1-4) In the mixed addenda heteropolyanions of the Keggin type, there are numerous possibilities for positional isomerisms⁵⁾ as well as geometrical ones.69 Hence, for a few of them, their structures, especially the location of the different metal atoms, have been confirmed by multinuclear (29Si, 31P, ⁵¹V, ¹⁸³W) NMR spectroscopies⁷—¹⁰⁾ and by X-ray structural analyses. 11-14) Stereospecific syntheses of trisubstituted tungstosilicate compounds^{7,9,10)} have been done by using structurally well-characterized trivacant lacunary nonatungstosilicate precursors, the A- α -[SiW₉O₃₄]¹⁰⁻¹⁵⁾ and A- β -[SiW₉O₃₄]¹⁰⁻ anion salts. On the other hand, it is uncertain whether the trivacant lacunary nonatungstophosphate anion, $[PW_9O_{34}]^{9-}$, is an α - or β -isomer.⁸⁾ By using the A- and B-[PW₉O₃₄]⁹— anion salts as precursors, two α -isomers of trivanadononatung stophosphate compounds, the A- α -[PV₃W₉O₄₀]⁶⁻⁷⁾ and B- α -[PV₃W₉O₄₀]⁶⁻ anion salts, 8) have been synthesized. In contrast, by using the A-[PW₉O₃₄]⁹⁻ anion salt as a precursor we previously reported the synthesis of the A- β -[PMo₃W₉O₄₀]³⁻ anion salt, 14) which is the first example containing a β -isomer of an A-type trisubstituted PW9 unit.

In this study, we extended these findings to the synthetic procedures for vanadium-trisubstituted nonatungsto-phosphate anion salts and newly isolated some A- β -[PV₃W₉O₄₀]⁶⁻ anion salts (Fig. 1a). This β -isomer, A-

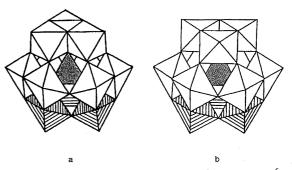


Fig. 1. Polyhedral representations of the A- β -[PV₃W₉O₄₀]⁶⁻ (a) and A- α -[PV₃W₉O₄₀]⁶⁻ anions (b). (Plain and hatched parts indicate WO₆ and VO₆ octahedra, respectively.)

 β -(NBuⁿ₄)₄H₂[PV₃W₉O₄₀], isomerizes to the corresponding α -one (Fig. 1b) both in the solid state and in solution under mild conditions. Furthermore, the isomerization process can be directly followed by Fourier transform-IR (FT-IR) and ³¹PNMR spectroscopies, affording its kinetics as the first report of the β -to- α isomerization in the solid state.

Experimental

Preparation of Trivanadononatungstophosphate Anion Salts. A-β-Cs₆[PV₃W₉O₄₀] (Abbreviated β-Cs₆). To an aqueous (90 cm³) solution of NaVO₃ (4.23 g, 34.4 mmol) was added 50 cm³ of 12 mol dm⁻³ HCl and then 50 cm³ of 1,4-dioxane. To the vigorously stirred pale yellow solution, A-Na₉[PW₉O₃₄]·7H₂O⁸⁾ (14.2 g, 5.54 mmol) was added slowly in small portions (about 50 mg) to turn red immediately. After stirring for 1 h at room temperature, CsCl solids (13.2 g, 78.4 mmol) were added to the solution. The resulting red precipitates were collected by filtration, washed with CH₃OH, and dried in vacuo to afford a red powder (12.5 g). It

was dissolved in H_2O (350 cm³), yellow insoluble materials being removed by centrifugation. The supernatant solution was evaporated to dryness under reduced pressure to afford a red powder of β -Cs₆ (10.5 g, 58% yield). Anal. Found: P, 0.95; V, 4.3; W, 49%. Calcd for Cs₆O₄₀PV₃W₉: P, 0.95; V, 4.67; W, 50.51%.

The condensation of NaVO₃ and A-Na₉[PW₉O₃₄] in an aqueous HCl and 1,4-dioxane mixed solution afforded the β -isomer of A-Cs₆[PV₃W₉O₄₀] in contrast to the α -isomer obtained by the same condensation in a buffer solution at pH 4.8.^{7,17)}

A-β-(NBuⁿ₄)₄**H₂[PV₃W₉O₄₀] (Abbreviated β-TBA₄H₂).** To the above supernatant solution of β-Cs₆ was added an aqueous (25 cm³) solution of NBuⁿ₄Br (6.45 g, 20.0 mmol). The resulting red precipitates were collected by filtration, washed with H₂O and C₂H₅OH, and dried in vacuo to afford a red powder of β-TBA₄H₂ (8.20 g, 43% yield). Anal. Found: C, 22.29; H, 4.20; N, 1.57; P, 0.88; V, 4.1; W, 47%. Calcd for C₆₄H₁₄₆N₄O₄₀PV₃W₉: C, 22.28; H, 4.27; N, 1.62; P, 0.90; V, 4.43; W, 47.96%.

A-β-(NBuⁿ₄)₆[PV₃W₉O₄₀] (Abbreviated β-TBA₆). To a CH₃CN (10 cm³) solution of β-TBA₄H₂ (1.00 g, 0.290 mmol) was added a CH₃OH solution containing 10 wt% of NBuⁿ₄OH (1.51 g, 0.582 mmol) and the solution was stirred for 5 min at room temperature. After the solvent was evaporated to dryness under reduced pressure, the residue was washed with diethyl ether, collected by filtration, and dried in vacuo to afford a red powder of β-TBA₆ (0.930 g, 81% yield). Anal. Found: C, 30.17; H, 5.70; N, 2.17%. Calcd for C₉₆H₂₁₆N₆O₄₀PV₃W₉: C, 29.32; H, 5.54; N, 2.14%

A-α-(NBuⁿ₄)₄H₂[PV₃W₉O₄₀] (Abbreviated α-TBA₄H₂). A-α-[PV₃W₉O₄₀]⁶⁻ was prepared by the condensation of A-Na₉[PW₉O₃₄]·7H₂O⁸⁾ and NaVO₃ in a buffer solution at pH 4.8 and isolated as a cesium salt, A-α-Cs₆[PV₃W₉O₄₀], according to the procedure in the literature. A-α-Cs₆[PV₃W₉O₄₀] (7.10 g, 2.17 mmol) was dissolved in H₂O (1000 cm³) and followed by addition of an aqueous (25 cm³) solution of NBuⁿ₄Br (6.45 g, 20.0 mmol). The resulting red precipitates were collected by filtration, washed with H₂O and C₂H₅OH, and dried in vacuo to afford a red powder of α-TBA₄H₂ (3.40 g, 45% yield). Anal. Found: C, 22.30; H, 4.11; N, 1.70%. Calcd for C₆₄H₁₄₆N₄O₄₀PV₃W₉: C, 22.28; H, 4.27; N, 1.62%.

Isomerization of the \beta-Isomers. The solid samples of the β -isomers were sealed in a glass tube under reduced pressure and left at a constant temperature. They were dissolved in a solvent and ^{31}P NMR spectra were measured. The progress of the isomerization of the β -isomer to the α -one was followed by the intensity ratio of their ^{31}P NMR signals.

Physical Measurements. IR spectra were measured with a Perkin–Elmer 983G spectrophotometer in KBr pellets. FT-IR spectra in solution were measured with a Nicolet 5DX spectrophotometer using a KRS-6 cell with a 0.1-mm light path. ^{31}P and ^{183}W NMR spectra were measured as previously reported. $^{18)}$ ^{51}V NMR spectra were measured with a JEOL JNM-EX270 spectrometer operating at 71.04 MHz. ^{51}V parameters: pulse width, 5.1 μs ; sweep width, 60000 Hz; number of acquisitions, 200. For all NMR measurements, the tetrabutylammonium salts and the cesium salts were dissolved in CD₃CN (0.01—0.05 mol dm $^{-3}$) and in D₂O (0.003—0.004 mol dm $^{-3}$), respectively. ^{31}P , ^{51}V , and ^{183}W NMR chemical shifts were referenced to 85%H₃PO₄, VOCl₃ (neat), and Na₂WO₄ in D₂O (2 mol dm $^{-3}$), respectively, using the sample replacement method. 19

Results and Discussion

Geometries of the β -Isomers. Figure 2 shows the IR spectrum of the β -TBA₄H₂ salt, together with that of the α -TBA₄H₂ salt. In the region of 1200—600 cm⁻¹ in both the spectra, there occur four major bands characteristic of the Keggin-type structure. They are assigned to P-O (O_p band), M=O (terminal oxygen, O_t band, M=V and W), M-O-M (corner-sharing oxygen, O_{bc} band), and M-O-M (edge-sharing oxygen, O_{be} band) stretching modes on the basis of the analogy to the assignments of the Keggin-type polyanions.²⁰⁾ The distinctions between the spectra of these α - and β -isomers are as follows. First, α -TBA₄H₂ develops well-separated $O_{bc}\ (883\ cm^{-1})$ and $O_{be}\ (805\ cm^{-1})$ bands, while the O_{bc} band (880 cm⁻¹) of β -TBA₄H₂ is weak and obscured by the broad O_{be} band (805 cm $^{-1}$). Second, the O_p band of β -TBA₄H₂ (1077 cm⁻¹) appears in the lower frequency region compared with that of α-TBA₄H₂ (1086 cm^{-1}). Third, in a lower frequency region (500—300 cm^{-1}), a strong band is observed for α -TBA₄H₂ (382 cm⁻¹), and three broad ones for β -TBA₄H₂ (406, 374, and 328 cm⁻¹). These findings are in good agreement with the spectral behavior characteristic of α - and β -isomers of $[XM_{12}O_{40}]^{n-1}$ polyanions (X = P, Si, Ge, and As, M = Mo and W). The β -Cs₆ salt also showed the IR spectral pattern characteristic of the β -isomer.

The reaction solution for the condensation of NaVO₃ and A-Na₉[PW₉O₃₄] as described for the preparation of the β -Cs₆ salt in the experimental section using D₂O instead of

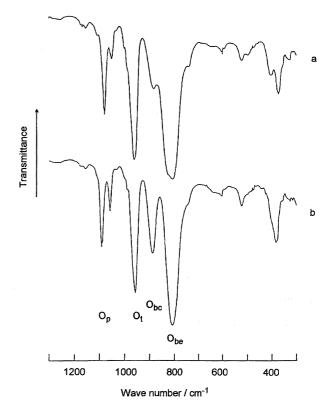


Fig. 2. IR spectra of the β -TBA₄H₂ salt (a) and the α -TBA₄H₂ salt (b) in KBr pellets.

 $\rm H_2O$ showed only a single sharp $^{31}\rm P\,NMR$ signal at -11.65 ppm and two $^{183}\rm W\,NMR$ signals at -106.7 and -117.9 ppm with integrated intensities in the ratio 1:2, as depicted in Fig. 3. These spectral patterns are consistent with the formation of a single species of a β -isomer of an A-type vanadium-trisubstituted nonatungstophosphate polyanion. That is, the higher field $^{183}\rm W\,NMR$ signal can be assigned to the six "belt" tungsten atoms and the other signal to the three "cap" ones, in comparison with those observed for the A-

 β -[SiV₃W₉O₄₀]⁷⁻¹⁰⁾ and A- β -[PMo₃W₉O₄₀]³⁻ anions.¹⁴⁾ The lower field signal shows satellites due to the spin-spin coupling ($^2J_{W-O-W}=$ ca. 16 Hz), although the higher field one is broadened by the quadrupolar influence of the ^{51}V nuclei.

The isolated β -Cs₆ salt gave a single sharp ³¹P NMR signal at -10.98 ppm in D₂O. The ³¹P, ⁵¹V, and ¹⁸³W NMR spectra of the β -TBA₄H₂ salt in CD₃CN vary with the amount of added H₂O, as demonstrated in Fig. 4. The broad ¹⁸³W NMR

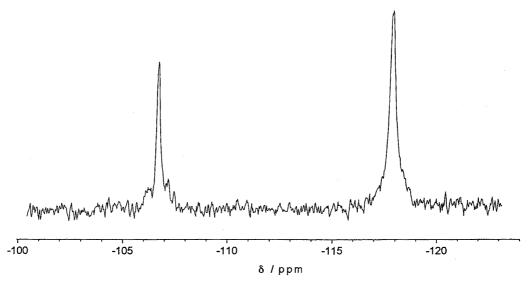


Fig. 3. 183 W NMR spectrum of the reaction solution for the condensation of NaVO₃ and A-Na₉[PW₉O₃₄] in a mixture of HCl/D₂O and 1,4-dioxane.

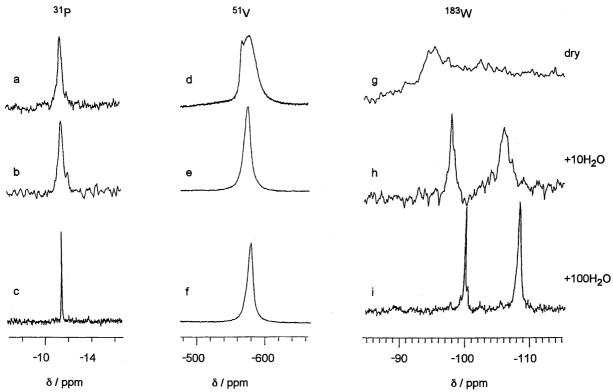


Fig. 4. ^{31}P (a, b, c), ^{51}V (d, e, f), and ^{183}W NMR spectra (g, h, i) of the β -TBA₄H₂ salt in CD₃CN. The amount of added H₂O is 0 (a, d, g), 10 (b, e, h), and 100 equivalent (c, f, i) of H₂O to the salt.

resonance in dry CD₃CN is gradually transformed to the two peaks with addition of H₂O. With 100 equivalent amounts of H_2O , two sharp signals are observed at -99.4 and -107.6ppm with integrated intensities in the ratio 1:2, which is similar to the signals observed for the reaction solution shown in Fig. 3. The lower field signal shows unambiguous spin-spin coupling satellites (${}^{2}J_{W-O-W} = 18.1 \text{ Hz}$). The value of the coupling constant agrees with those observed for pairs of tungsten atoms via the corner-sharing oxygen atom ($^2J_{W-O-W} = 13 - 30 \text{ Hz}$), which is larger than those via an edge-sharing one (${}^{2}J_{W-O-W} = 5$ —12 Hz) as previously reported for the Keggin-type heteropoly tungstates. 7,10) Concomitantly, the broad ⁵¹V NMR resonance consisting of two or more components in dry CD₃CN is transformed to a single broad signal (-574.6 ppm) with 10 equivalent amounts of H_2O . In the ³¹P NMR spectra, the broad signal (-11.64 ppm) in dry CD₃CN is also sharpened and shifted to a lower field with addition of H₂O. These results indicate that the bridging oxygen atoms of the β -TBA₄H₂ salt are protonated, as observed for $A-\beta-(NBu^n_4)_4H_3[SiV_3W_9O_{40}]^{.10}$ In dry CD₃CN the protonation site is rather localized on the NMR time scales and the $C_{3\nu}$ symmetry for the naked A- β -[PV₃W₉O₄₀]⁶⁻ anion is lowered, leading to broadening of 31 P, 51 V, and 183 W NMR signals of the β -TBA₄H₂ salt. The presence of H₂O accelerates the exchange process between the protonation sites of the bridging oxygen atom. Hence, the A- β -[H₂PV₃W₉O₄₀]⁴⁻ anion is observed as an overall average $C_{3\nu}$ symmetry.

The β -TBA₄H₂ salt was deprotonated in CH₃CN by addition of 2 equivalent amounts of NBuⁿ₄OH. The obtained β -TBA₆ salt afforded a sharp single ³¹P NMR signal at -10.90 ppm in wet CD₃CN (about 100 equivalent amounts of H₂O to the salt added). Furthermore, upon the reaction of β -TBA₄H₂ with 3 equivalent amounts of NBuⁿ₄OH, the product gave the same ³¹P NMR signal as that of β -TBA₆. Therefore, the fully deprotonated β -TBA₆ salt did not decompose

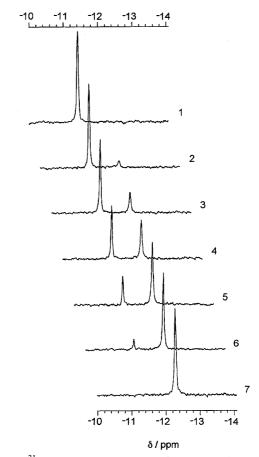


Fig. 5. 31 P NMR spectra of the wet CD₃CN solutions of the β -TBA₄H₂ salt heated at 80 °C in the solid state. (heating time; 0 (1), 2 (2), 8 (3), 19 (4), 39 (5), 94 (6), and 160 h (7)).

in the presence of additional OH⁻. The distinction between the ^{31}P NMR resonances of β -TBA₄H₂ (-11.42 ppm) and of β -TBA₆ (-10.90 ppm) is assumed to reflect the structural difference between these polyanions; the polyanion moiety

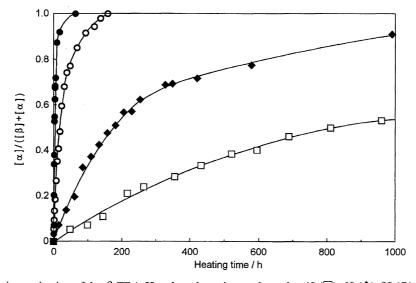


Fig. 6. Progress of the isomerization of the β -TBA₄H₂ salt to the α -isomer heated at 40 (\square), 60 (\spadesuit), 80 (\bigcirc), and 100 °C (\blacksquare) in the solid state.

of β -TBA₄H₂ is protonated.

Isomerization of the β -TBA₄H₂ Salt. The β -TBA₄H₂ salt was heated at 80 °C for 160 h, which had the same IR spectral patterns as those of the α -TBA₄H₂ salt depicted in Fig. 2. This indicates the isomerization of the β -TBA₄H₂ salt to the α -isomer in the solid state. Figure 5 shows the ³¹P NMR spectra of the wet CD₃CN solutions of the β -TBA₄H₂ salt heated at 80 °C in the solid state. The sharp signal observed at -11.42 ppm for the unheated β -TBA₄H₂ salt

decreases in the intensity with the heating time. Concomitantly, a new signal develops at -12.28 ppm; the chemical shift is the same as that of the α -TBA₄H₂ salt.

Figure 6 shows the progress of the isomerization of β -TBA₄H₂ to the α -isomer at 40, 60, 80, and 100 °C in the solid state, which was evaluated by the intensity ratios of their ³¹PNMR signals measured in wet CD₃CN (Fig. 5). The first-order rate law (Eq. 1) was applied to the kinetics of this isomerization;

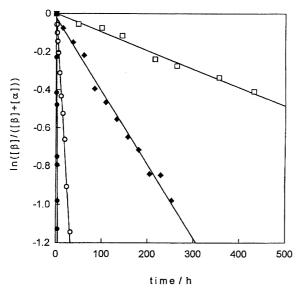


Fig. 7. Plots of $\ln(\lceil \beta \rceil/(\lceil \beta \rceil + \lceil \alpha \rceil))$ vs. time for the isomerization of the β -TBA₄H₂ salt to the α -isomer heated at 40 (\square), 60 (\spadesuit), 80 (\bigcirc), and 100 °C (\blacksquare) in the solid state.

Fig. 8. Eyring plots of the rate constants for the isomerization of the β -TBA₄H₂ salt to the α -isomer in the solid state.

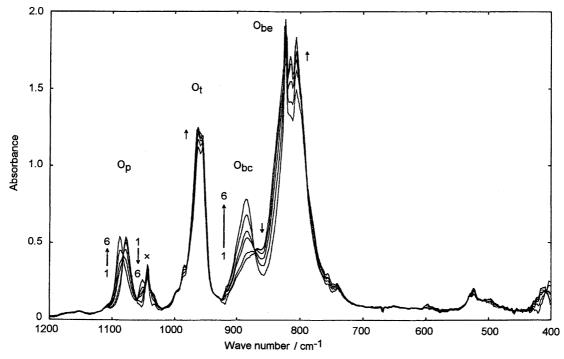


Fig. 9. FT-IR spectral changes of a CH₃CN solution containing the β -TBA₄H₂ salt (2.40×10⁻² mol dm⁻³). (reaction time at 60 °C; 0 (1), 20 (2), 98 (3), 164 (4), 315 (5), and 644 h (6), x; peak of the solvent).

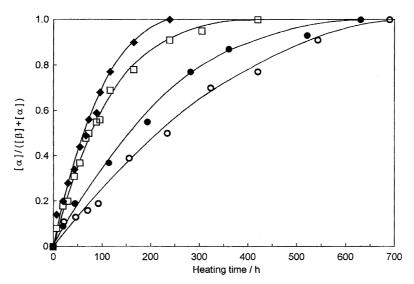


Fig. 10. Progress of the isomerization of the β -TBA₄H₂ salt to the α -isomer in dry CD₃CN (\bullet) at 60 °C and in the presence of H₂O (\bigcirc), 0.1 M HCl (\bullet), and 0.1 M DCl (\square), where 100 equivalent amounts of the additive to the salt were used.

$$\ln(1 - [\alpha]/([\beta] + [\alpha])) = \ln([\beta]/([\beta] + [\alpha])) = -k_1 t, \quad (1)$$

where $[\alpha]$ and $[\beta]$ are the concentration of the α - and β -isomers, respectively. Plots of $\ln([\beta]/([\beta]+[\alpha]))$ vs. time for the isomerization at each temperature are shown in Fig. 7. Linear correlations between them are observed up to 60—70% completion of the isomerization. From the slopes of their plots the first-order rate constants, k_1 , were evaluated to be 2.19×10^{-7} (s⁻¹) at 40 °C, 1.02×10^{-6} (s⁻¹) at 60 °C, 9.64×10^{-6} (s⁻¹) at 80 °C, and 7.94×10^{-5} (s⁻¹) at 100 °C. Figure 8 shows Eyring plots for the rate constants. The activation parameters were calculated using the Eyring equation: ΔH^{\ddagger} =93.3 (kJ mol⁻¹) and ΔS^{\ddagger} =-77.3 (J K⁻¹ mol⁻¹).

The β -Cs₆ and β -TBA₆ salts were also heated at 100 °C in the solid state for several hours. However, the ³¹P NMR spectra of them measured in wet CD₃CN were identical with those of the respective unheated β -isomers, indicating no isomerization to the α -isomers. These results suggest that protonation to the polyanion of the β -isomer promotes the β -to- α isomerization in the solid state.

Figure 9 shows the FT-IR spectral changes of a CH_3CN solution containing β -TBA₄H₂ at 60 °C. In the region of the obscured O_{bc} band, a new one develops at 885 cm⁻¹ with time. Concomitantly, the O_p band (1078 cm⁻¹) decreases, while a new one in the higher frequency (1088 cm⁻¹) increases. The final spectrum in Fig. 9 was changed no more by further heating of the solution at 60 °C and agrees with that of the α -TBA₄H₂ salt.

The ^{31}P NMR spectrum of a CD₃CN solution containing β -TBA₄H₂ showed the spectral changes similar to those observed for the salt heated in the solid state depicted in Fig. 5. These findings indicate that the β -TBA₄H₂ salt also isomerizes to the α -isomer in solution. The progress of the isomerization in CD₃CN was examined in the presence of some kinds of proton sources. It was evaluated by the intensity ratios of the ^{31}P NMR signals of the β - and α -isomers, as depicted in Fig. 10. The rate of the isomerization increases

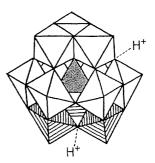


Fig. 11. Polyhedral representation of the A- β -[H₂PV₃-W₉O₄₀]⁴⁻ anion together with probable protonation sites. (Plain and hatched parts indicate WO₆ and VO₆ octahedra, respectively.)

by the addition of HCl. Furthermore, the presence of DCl instead of HCl appreciably decreases the rate, indicating a deuterium effect. These results indicate that the appreciable increase of proton concentration in the solution promotes the protonation to the polyanion and consequently accelerates the β -to- α isomerization. On the other hand, in the presence of a large amount of H₂O the rate of the isomerization decreases compared with that in dry CD₃CN. This is presumably due to the depression of the protonation caused by the addition of H₂O to the solution.

The β -TBA₄H₂ salt has two protons. One of them is probably bound to the bridging oxygen atom in the V–O–V bond, because it is the most basic one among the oxygen atoms in the polyanion, as previously described for the A- β -[HSiV₃W₉O₄₀]^{6–} anion.¹⁰⁾ The other protonation site is considered to be the bridging oxygen atom between "cap" and "belt" tungsten atoms, as illustrated in Fig. 11, on the basis of the finding that the protonation to the A- β -[PV₃W₉O₄₀]^{6–} anion promotes the isomerization of the β -TBA₄H₂ salt to the α -isomer.

References

- 1) M. Misono, Proc. Int. Conf. Chem. Uses Molybdenum, 4th, 1982, 289.
- K. Nomiya, H. Saijoh, and M. Miwa, Bull. Chem. Soc. Jpn., 53, 3719 (1980).
- 3) R. G. Finke, B. Rapko, and T. J. R. Weakley, *Inorg. Chem.*, **28**, 1573 (1989), and references therein.
- 4) J. K. Burdett and C. K. Nguyen, J. Am. Chem. Soc., 112, 5366 (1990), and references therein.
 - 5) M. T. Pope and T. F. Scully, *Inorg. Chem.*, **14**, 953 (1975).
- 6) L. C. W. Baker and J. S. Figgis, *J. Am. Chem. Soc.*, **92**, 3794 (1970).
 - 7) P. J. Domaille, J. Am. Chem. Soc., 106, 7677 (1984).
- 8) P. J. Domaille and G. Watunya, *Inorg. Chem.*, **25**, 1239 (1986).
- 9) R. G. Finke and M. W. Droege, J. Am. Chem. Soc., 106, 7274 (1984).
- 10) R. G. Finke, B. Rapko, R. J. Saxton, and P. J. Domaille, *J. Am. Chem. Soc.*, **108**, 2947 (1986).

- 11) T. J. R. Weakley, *J. Chem. Soc.*, *Chem. Commun.*, **1984**, 1406.
- 12) P. J. Domaille and R. L. Harlow, J. Am. Chem. Soc., 108, 2108 (1986).
- 13) T. Ozeki and T. Yamase, Acta Crystallogr., Sect. C, 47C, 693 (1991)
- 14) I. Kawafune and G. Matsubayashi, Chem. Lett., 1992, 1869.
- 15) M. M. Mossoba, C. J. O'Connor, M. T. Pope, E. Sinn, G. Hervé, and A. Tézé, *J. Am. Chem. Soc.*, **102**, 6866 (1980).
- 16) F. Robert and A. Tézé, *Acta Crystallogr.*, *Sect. B*, **37B**, 318 (1981).
- 17) P. J. Domaille, Inorg. Synth., 27, 96 (1990).
- 18) I. Kawafune and G. Matsubayashi, *Bull. Chem. Soc. Jpn.*, **67**, 694 (1994).
- 19) M. A. Leparulo-Loftus and M. T. Pope, *Inorg. Chem.*, 26, 2112 (1987).
- 20) C. Rocchiccioli-Deltcheff, R. Thouvenot, and R. Franck, *Spectrochim. Acta, Part A*, **32**, 587 (1976); C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, *Inorg. Chem.*, **22**, 207 (1983); R. Thouvenot, M. Fournier, R. Franck, and C. Rocchiccioli-Deltcheff, *Inorg. Chem.*, **23**, 598 (1984).